ひものついた風船の運動

OKWave>http://okwave.jp/qa/q7234037.htmlより。質量が無視できないひものついたヘリウム風船の振動。私のオリジナルの問題
ばねにつりさげられたひも - 科学のおもちゃ箱@Hatenaに類似だが,ばねがなくとも振動する。
【問題】

十分に長くその一部が地面にあるひものついたヘリウム風船がある。風船はこの状態でつりあって静止している。風船の体積をV,風船本体の質量をm,ひもの線密度を\lambda,空気とヘリウムの密度を\rho_0\rho,重力加速度の大きさをgとする。風船が運動するとき,その速さに比例する空気抵抗を受けるものとし,その比例定数をkとする。
f:id:yokkun831:20190328105919j:plain

(1) つり合い位置の高さ(=ひもの長さ)hを求めよ。

(2) つり合い位置から上下にずらして放すと,風船は振動を始める。風船が浮いている高さ(=ひもの長さ)をz(t)として,z(t)に関する運動方程式を導け。

【解答】
(1)

つりあいにより,

$$(m + \rho V + \lambda h)g = \rho_0Vg$$

$$\therefore h = \frac{(\rho_0 - \rho)V - m}{\lambda}$$

z = hが(2)の運動方程式で示される振動の中心になる。

(2)

風船の位置がzで,速度が上向き\dot{z}>0のとき,微小時間dtの間の風船+ひもの系の運動量変化は,

$$dp = \{m + \rho V + \lambda (z+dz)\}(\dot{z}+d\dot{z})-( m + \rho V + \lambda z )\dot{z}=(m + \rho V + \lambda z)d\dot{z}+\lambda\dot{z}dz$$

上昇中は地面からの抗力はないので,運動方程式

$$\frac{dp}{dt} = \rho_0Vg - (m + \rho V + \lambda z)g - k\dot{z}$$

すなわち,

$$( m + \rho V + \lambda z )\ddot{z} + \lambda \dot{z}^2 = \rho_0Vg - (m + \rho V + \lambda z)g - k\dot{z}$$

となる。

第2項\lambda\dot{z}^2 は上昇中のとき地面から新たに運動に参入するひもの部分の運動量変化率を表している。したがって,下降中は地面に達して運動から離脱していくひもの部分の下向き運動量の減少率を表すことになる。この運動量減少は結局地面から受ける抗力Nがまるごと引き受けることになる。すなわち

$$\lambda\dot{z}^2 = N$$

である。したがって,両者をキャンセルすると下降中の運動方程式

$$( m + \rho V + \lambda z )\ddot{z} = \rho_0Vg - (m + \rho V + \lambda z)g - k\dot{z}$$

となる。

下降中は,地面へのひもの非弾性衝突によってエネルギーが散逸していく。空気抵抗に加えてこれが振動の減衰を引き起こすことになる。

Algodooでシミュレートしてみた。空気抵抗を考慮した場合と考慮しない場合を比較している。空気抵抗がなくともひもの衝突によって減衰が起こる。ただし,シミュレーションの空気抵抗の係数などの条件設定は,ほどよい減衰が起こるように調節してある。ちなみに,最新のAlgodoo for Education では,空気抵抗の粘性抵抗と慣性抵抗を独立に設定できるようになっていることを初めて知った。
f:id:yokkun831:20190328110424j:plain

下図はPOLYMATHによる数値積分結果(空気抵抗あり。ただし,条件はAlgodooシーンに合わせている)。Algodooシミュレーションの方が減衰が強いようだ。ひもが多体連結になっており,そこでのエネルギー散逸が無視できないと思われる。なお,数値積分の際,上下に動くときの運動方程式の切り替えは,論理式を使うことで可能である。

$$( m + \rho V + \lambda z )\ddot{z} + \lambda \dot{z}^2\cdot(\dot{z}>0) = \rho_0Vg - (m + \rho V + \lambda z)g - k\dot{z}$$

のように記述すればよい。
f:id:yokkun831:20190328110502j:plain

Algodooシーンのダウンロード
https://www14.atwiki.jp/yokkun?cmd=upload&act=open&pageid=534&file=Husen.phz

(初稿:2012/01/10)